- Download PDF - 

SEEFOR 1 (1): 28-40
DOI: http://dx.doi.org/10.15177/seefor.10-04

Original scientific paper


Gap-phase Regeneration of a Central-European Sessile Oak-Hornbeam Forest

Tamás Tobisch 1*

1 Forest Research Institute, Department of Ecology and Silviculture, Várkerület 30/A, H-9600 Sárvár, Hungary

 * Corresponding author: e-mail:  

TOBISCH T 2010 Gap-phase Regeneration of a Central-European Sessile Oak-Hornbeam Forest. South-east Eur for 1 (1): 28-40. DOI: http://dx.doi.org/10.15177/seefor.10-04

Cited by:        CrossRef        Google Scholar


Background and Purpose: Gap cutting can be regarded as a regeneration tool of close-to-nature forestry. However, very little is known about the gap-phase regeneration of sessile oak. This paper examines height growth of sessile oak (Quercus petraea) and hornbeam (Carpinus betulus) seedlings, as well as, spread of blackberry (Rubus fruticosus) in circular gaps of various sizes.
Material and Methods: Three gaps of 15 m (G15), three gaps of 30 m (G30) and two gaps of 45 m (G45) in diameter were cut in a sessile oak-hornbeam forest. Height of sessile oak and hornbeam seedlings, as well as, cover of soil moisture indicator plants and that of blackberry were monitored until the fourth year of the regeneration.
Results and Conclusion: ISessile oak grew faster in G30 than in G15, but the two larger gap types did not differ in this aspect. Intensity of hornbeam seedling development increased with gap size. Proliferation rate of blackberry was the highest in G45. Within the gaps, both sessile oak and hornbeam were the tallest in the centres. In the northern parts, competition ability of hornbeam decreased relatively to that of sessile oak. For spread of blackberry, the west locations were the most optimal. Development of both of sessile oak and hornbeam seedlings was related to soil moisture as indicated by the herb layer. It was concluded that regeneration of sessile oak could be made more secure if starting it with cutting small gaps (e.g. 0.5 tree height) and if these gaps are enlarged then gradually.

Keywords: Quercus petraea, Carpinus betulus, Rubus fruticosus, regeneration, gap, soil moisture


  1. RUNKLE JR 1989 Synchrony of regeneration, gaps, and latitudinal differences in trespecies diversity. Ecology 70 (3): 546-547. DOI: http://dx.doi.org/10.2307/1940199
  2. SCHÜTZ J-P 2002 Silvicultural tools to develop irregular and diverse forest structures. Forestry 75 (4): 329-337. DOI: http://dx.doi.org/10.1093/forestry/75.4.329
  3. BAUHUS J 1996 C and N mineralization in an acid forest soil along a gap-stand gradient. Soil Biol Biochem 28 (7): 923-932. DOI: http://dx.doi.org/10.1016/0038-0717(96)00066-1
  4. MIHÓK B, GÁLHIDY L, KELEMEN K, STANDOVÁR T 2005 Study of gap-phase regeneration in a managed beech forest: relations between tree regeneration and light, substrate features and cover of ground vegetation. Acta Silv Lign Hung 1: 25-38
  5. RITTER E, DALSGAARD L, EIRTHORN K S 2005 Light, temperature and soil moisture regimes following gap formation in a semi-natural beech-dominated forest in Denmark. For Ecol Manage 206 (1-3): 15-33. DOI: http://dx.doi.org/10.1016/j.foreco.2004.08.011  
  6. GÁLHIDY L, MIHÓK B, HAGYÓ A, RAJKAI K, STANDOVÁR T 2006 Effects of gap size and associated changes in light and soil moisture on the understorey vegetation of a Hungarian beech forest. Plant Ecol 183 (1): 133-145. DOI: http://dx.doi.org/10.1007/s11258-005-9012-4
  7. RITTER E, VESTERDAL L 2006 Gap formation in Danish beech (Fagus sylvatica) forests of low management intensity: soil moisture and nitrate in soil solution. European Journal of Forest Research 125 (2): 139-150. DOI: http://dx.doi.org/10.1007/s10342-005-0077-3
  8. ROZENBERGAR D, MIKAC S, ANIĆ I, DIACI J 2007 Gap regeneration patterns in relationship to light heterogeneity in two old-growth beech–fir forest reserves in South East Europe. Forestry 80 (4): 431-443. DOI: http://dx.doi.org/10.1093/forestry/cpm037
  9. BROKAW N, BUSING R T 2000 Niche versus chance and tree diversity in forest gaps. Trends in Ecology and Evolution 15 (5): 183-188. DOI: http://dx.doi.org/10.1016/S0169-5347(00)01822-X
  10. RAYMOND P, MUNSON A D, RUEL J C, COATES K D 2006 Spatial patterns of soil microclimate, light, regeneration, and growth within silvicultural gaps of mixed tolerant hardwood - white pine stands. Can J For Res 36 (3): 639-651. DOI: http://dx.doi.org/10.1139/x05-269
  11. SCHÜTZ J-P 2004 Opportunistic methods of controlling vegetation, inspired by natural plant succession dynamics with special reference to natural outmixing tendencies in a gap regeneration. Ann For Sci 61 (2): 149-156. DOI: http://dx.doi.org/10.1051/forest:2004006
  12. RITTER E 2005 Litter decomposition and nitrogen mineralization in newly formed gaps in a Danish beech (Fagus sylvatica) forest. Soil Biol Biochem 37 (7): 1237-1247. DOI: http://dx.doi.org/10.1016/j.soilbio.2004.11.020
  13. NAAF T, WULF M 2007 Effects of gap size, light and herbivory on the herb layer vegetation in European beech forest gaps. For Ecol Manage 244 (1-3): 141-149. DOI: http://dx.doi.org/10.1016/j.foreco.2007.04.020 
  14. LÜPKE B 1998 Silvicultural methods of oak regeneration with special respect to shade tolerant mixed species. For Ecol Manage 106 (1): 19-2. DOI: http://dx.doi.org/10.1016/S0378-1127(97)00235-1 
  15. NICOLINI E, BATHÉLÉMY D, HEURET P 2000 Influence de la densité du couvert forestier sur le développement architectural de jeunes chênes sessiles, Quercus petraea (Matt.) Liebl. (Fagaceae), en régénération forestière. Can J Bot 78 (12): 1531-1544. DOI: http://dx.doi.org/10.1139/b00-125
  16. BABIEC A 2007 The influence of gaps on tree regeneration: A case study of the mixed lime-hornbeam (Tilio-Carpinetum Tracz. 1962) communities in the Białowieża Primeval Forest. Pol J Ecol 55 (3): 441-455
  17. COLLET C, PIBOULE A, LEROY O, FROCHOT H 2008 Advance Fagus sylvatica and Acer pseudoplatanus seedlings dominate tree regeneration in a mixed broadleaved former coppice-with-standards forest. Forestry 81 (2): 135-150. DOI: http://dx.doi.org/10.1093/forestry/cpn004
  18. DIACI J, GYOEREK N, GLIHA J, NAGEL TA 2008 Response of Quercus robur L. seedlings to north-south asymmetry of light within gaps in floodplain forests of Slovenia. Ann For Sci 65 (1): 105. DOI: http://dx.doi.org/10.1051/forest:2007077
  19. TOBISCH T 2009 Egyenletes bontáson és lékvágáson alapuló erdőfelújítás összehasonlítása gyertyános-kocsánytalan tölgyesben [A comparison of shelterwood and gap cutting in a Hungarian sessile oak-hornbeam forest]. PhD thesis, University of West Hungary, Sopron, p 139 (in Hungarian with English abstract)
  20. NOWINSKA R 2010 Reactions of the herb and moss layer, tree saplings and the shrub layer to tree deaths in forests of the Wielkopolska National Park (Western Poland). Biologia 65 (2): 265-272. DOI: http://dx.doi.org/10.2478/s11756-010-0014-x
  21. HARMER R, BOSWELL R, ROBERTSON M 2005 Survival and growth of tree seedlings in relation to changes in the ground flora during natural regeneration of an oak shelterwood. Forestry 78 (1): 21-32 DOI:http://dx.doi.org/10.1093/forestry/cpi003
  22. HARMER R, MORGAN G 2007 Development of Quercus robur advance regeneration following canopy reduction in an oak woodland. Forestry 80 (2): 137-149. DOI: http://dx.doi.org/10.1093/forestry/cpm006
  23. EVANS J 1988 Natural regeneration of broadleaves. Forestry Commission Bulletin No. 78 HMSO, London, p 46
  24. BORHIDI A 1995 Social behaviour types, the naturalness and relative ecological indicator values of the higher plants in the Hungarian Flora. Acta Bot Hung 39 (1-2): 97-181
  25. STILL AW, WHITE AP 1981 The approximate randomization test as an alternative to the F test in analysis of variance. British Journal of Mathematical and Statistical Psychology 34 (2): 243-252. DOI: http://dx.doi.org/10.1111/j.2044-8317.1981.tb00634.x
  26. SOKAL RR, ROHLF FJ 2003 Biometry. 3rd edition. W.H. Freeman and Company, New York, p 887
  27. McDONDALD JH 2009 Handbook of Biological Statistics (2nd edition). Sparky House Publishing, Baltimore, Maryland, available online at: http://udel.edu/~mcdonald/statintro.html 
  28. HOAGLIN DC, WELSCH RE 1978 The hat matrix regression in ANOVA. The American Statistician 32 (1): 17-22. DOI: http://dx.doi.org/10.1080/00031305.1978.10479237
  29. MANLY BFJ 2007 Randomization, Bootstrap and Monte Carlo Methods in Biology. Third edition. Chapman & Hall/CRC, Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, p 414
  30. TUTIN TG, HEYWOOD VH, BURGES NA, MOORE DM, VALENTINE DH, WALTERS SM, WEBB DA, CHATER AO, DEFILIPPS RA, RICHARDSON IBK (eds). 1964-1980 Flora Europaea Vol. I-V. Cambridge University Press, Cambridge
  31. BIOMSTAT 2002 Version 3.3. Exeter Software, East Setauket, USA
  32. SZAPPANOS A 1967 A Carex pilosa gyertyános–kocsánytalan tölgyesek természetes felújításának főbb kérdései. [Main questions of natural regeneration of Carex pilosa sessile oak-hornbeam stands]. Candidate dissertation, University of West Hungary, Sopron (in Hungarian with English abstract)
  33. TOBISCH T 2008 Természetes erdőfelújítási eljárások összehasonlítása gyertyános-kocsánytalan tölgyesben. [A comparison of natural regeneration methods in a sessile oak-hornbeam stand.] Erdészeti Kutatások 92: 77-94 (in Hungarian with English abstract)
  34. HARMER R, ROBERTSON M 2003 Seedling root growth of six broadleaved tree species grown in competition with grass under irrigated nursery conditions. Ann For Sci 60 (7): 601-608. DOI: http://dx.doi.org/10.1051/forest:2003052


© 2015 by the Croatian Forest Research Institute. This is an Open Access paper distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0).